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Abstract

Exact closed-form expressions are derived for the torsional stiffnesses of spherical rubber bush mountings in the two
principal modes of angular deformation, based upon the classical theory of elasticity. Agreement is found, as limiting
cases, with the known results for the torsional stiffness and shear stiffness of an elastomer pad of circular cross-section.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Major companies design and manufacture a full range of rubber bush mountings. These are utilized
widely, but are often especially developed for improving the suspension characteristics of railway rolling
stock and automobiles. Amongst these, spherical bushes play an important though specialized role, partic-
ularly in flexible couplings and floating ring couplings, where the accommodation of multidirectional move-
ment is essential.

A spherical bush mounting consists of a shell of rubber which is bonded onto inner and outer rigid, con-
centric metallic spherical housings with their polar caps removed. The aim of this paper is to provide easily-
calculable, closed-form expressions for their stiffness, and the stresses created, to aid their design, which at
present is undertaken using ‘‘proven experience’’ according to manufacturers advertizing literature. The
analyses presented here study the two principal torsional modes of deformation, in which torsional mo-
ments are applied to the outer surface with the inner surface maintained fixed. The only previous analysis
of the situation in which the applied moment is about the z-axis was that undertaken by Hill (1975), but
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unfortunately the expression he gives for the torsional stiffness appears to be fundamentally incorrect.
There is apparently no corresponding analysis available for when the applied moment is about the x-axis.

The geometry of the bush and the fundamental governing equations are first formulated in Section 2.
Then, in Section 3, exact analytical solutions are derived for the displacement and stress components cre-
ated under a torsional deformation about the z-axis. A representation is determined for the corresponding
torsional stiffness of the spherical bush, which is demonstrated in a limiting case to reproduce the torsional
stiffness of an elastomer pad of circular cross-section. An analogous analysis is undertaken in Section 4
when the bush is subjected to a moment about the x-axis. An expression is found for the appropriate tor-
sional stiffness, which is shown to reduce to the shear stiffness of a circular pad as a limiting case.
2. Physical formulation and governing equations

Consider a spherical rubber bush which is bonded to rigid concentric spherical metal surfaces at inner
and outer radii a and b, respectively, and is bounded by the conical free surfaces h = a and h = p � a, as
shown in Fig. 1. Here a rectangular Cartesian coordinate system (x,y,z) is defined relative to an origin
O at the centre of the bush, with the z-axis along the line h = 0, and is related to the spherical polar coor-
dinates (r,h,/) of a point P within the bush by the equations
x ¼ r sin h cos/; y ¼ r sin h sin/; z ¼ r cos h:
z

y

α

b

a

Fig. 1. Cross-section of the spherical bush through the x = 0 plane.
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The inner surface is fixed throughout, while the outer surface is subjected to torsional moments in Sections
3 and 4. The objectives here are to derive expressions in each case for the subsequent components of the
displacement and stress and the corresponding stiffnesses.

It is assumed that the rubber is homogeneous, isotropic and incompressible, and that the displacement
gradients are sufficiently small during the deformations for the classical linear theory of elasticity to be
applicable. Since the pioneering paper of Adkins and Gent (1954) in which they considered, both theoret-
ically and experimentally, the behaviour of cylindrical rubber bush mountings, these assumptions have been
widely regarded in the ‘‘rubber literature’’ as appropriate and justified in many practical applications. The
radial, tangential and azimuthal components of the displacement of the point P are denoted by ur, uh and
u/, respectively, and the spherical strain and stress components by eij and rij, where i, j = r, h or /, in the
usual notation.

For small strains, the assumption of incompressibility implies that
err þ ehh þ e// ¼ 0: ð1Þ
The strain–displacement gradient relations are
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and the constitutive equations can be written as
err ¼
1

3l
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ð3Þ
where l is the shear modulus. The equilibrium equations which must be fulfilled in the radial, tangential
and azimuthal directions are
orrr
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ð4Þ
It is convenient as an aid to the following analyzes to note at this stage that elimination, using Eq. (1), be-
tween the expressions (3) leads to the relations
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rrr ¼ rhh þ 2lðerr � ehhÞ;
r// ¼ rhh � 2lðerr þ 2ehhÞ:

ð5Þ
3. Torsional deformation about the z-axis

Suppose that, with the inner spherical surface fixed, a torsional moment of magnitude Mz is applied
about the z-axis to the outer surface, thereby twisting it through a small angle Xz.

3.1. Solution for the torsional stiffness

It is clear that in this deformation mode the point P within the rubber will displace in the azimuthal
direction along a circle of radius r sinh centred on, and at right angles to, the z-axis with the displacements
in the radial and tangential directions both zero. Representations for the corresponding displacement
components at the general point P in the rubber during this torsional deformation are thus sought in
the forms
ur ¼ 0; uh ¼ 0; u/ ¼ W ðrÞ sin h; ð6Þ
where the functionW depends only upon r. The corresponding strain components follow using Eqs. (2). It
is then seen that the incompressibility condition (1) is satisfied identically and, from Eqs. (5), that at any
point
rrr ¼ rhh ¼ r//; ð7Þ
and it is found from Eqs. (3)4 to (3)6 that the only non-zero shear stress component is given by
rr/ ¼ l
dW
dr

� W
r

� �
sin h: ð8Þ
The equilibrium equations (4) thus yield the system
orhh

or
¼ 0;

orhh

o/
þ l r

d2W
dr2

þ 2
dW
dr

� 2
W
r

� �
sin2h ¼ 0;

orhh

oh
¼ 0;

ð9Þ
which is to be solved subject to the appropriate boundary conditions.
The general solutions of Eqs. (9) are
rhh ¼ a1; W ¼ a2r þ a3=r2; ð10Þ

where a1, a2 and a3 are arbitrary constants. However, a1 = 0, since the bush has free surfaces at h = a and
h = p � a, and so in fact, from Eqs. (7),
rrr ¼ rhh ¼ r// ¼ 0 ð11Þ

everywhere within the rubber. Substitution of the representation (10)2 into Eq. (8) gives
rr/ ¼ � 3la3

r3
sin h: ð12Þ
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The constant a3 is determined by equating the combined moments about the z-axis of these components to
the imposed couple Mz, through the expression
Mz ¼
Z 2p

0

Z p�a

a
rr/r3sin

2hdhd/: ð13Þ
Evaluating this, using Eq. (12), shows that
a3 ¼ � Mz

12lp cos a 1� 1
3
cos2a

� � : ð14Þ
The conditions
u/ ¼ 0 for all h when r ¼ a ð15Þ

and
u/ ¼ b sin hXz for all h when r ¼ b ð16Þ

at the fixed inner surface and outer surface, respectively, imply by recalling Eqs. (6)3 and (10)2 that
a2 ¼ � a3

a3
¼ b3Xz

b3 � a3
: ð17Þ
A representation for the required torsional stiffness, T z, defined by
T z ¼ Mz

Xz ; ð18Þ
can now be determined from Eqs. (14) and (17) in the form
T z ¼ 12lpa3b3

b3 � a3
cos a 1� 1

3
cos2a

� �
: ð19Þ
It should be noted that this corrects the expression derived by Hill (1975, Eq. (4.7)), and subsequently re-
quoted by Hill (1981, 1982) and Muhr (1995). Hill�s error apparently arises through the omission of a mul-
tiplicative factor of sin h in the expression for w in his Eq. (4.1).

Putting a = 0 into Eq. (19) gives the torsional stiffness, TComp, of a complete spherical shell as
T Comp ¼
8lpa3b3

b3 � a3
: ð20Þ
3.2. Stresses within the bush

The only non-zero stress component created in the bush is given by Eqs. (12) and (14) as
rr/ ¼ Mz sin h

4pr3 cos a 1� 1
3
cos2a

� � : ð21Þ
It attains its maximum value, rmax
r/ , of
rmax
r/ ¼ Mz

4pa3 cos a 1� 1
3
cos2a

� � ; ð22Þ
when r = a and h = p/2.
It is of especial interest to observe that the unbonded free surfaces h = a and h = p � a remain com-

pletely free of stress.
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3.3. Limiting case

It is instructive to give added justification of the expression (19) for the torsional stiffness, Tz, by briefly
demonstrating that it enables the known torsional stiffness of an elastomer pad of circular cross-section to
be reassuringly reproduced as a limiting case.

The combined torsional stiffness of the two polar caps defined by h 6 a and h P p � a with a 6 r 6 b for
0 6 / 6 2p is obtained by subtracting T z, given by Eq. (19), from TComp in Eq. (20). Hence the torsional
stiffness, T z

Pol, of each polar cap is given by
T z
Pol ¼

2lpa3b3

b3 � a3
ð2� 3 cos a þ cos3aÞ: ð23Þ
The cap for h 6 a is depicted in Fig. 2, with R as the arc distance from h = 0 to h = a along the mid-section
of the region of thickness h.

It is clear from Fig. 2 that a, b, h, R and a are related by
a ¼ R
a
� h
2
; b ¼ R

a
þ h
2
: ð24Þ
As the radii a and b are increased, the shape of the region will tend towards that of a circular pad of radius
R and thickness h. This process can be regarded as equivalent to taking the limit of T z

Pol as the inclination, a,
of the face h = a tends to zero. For small values of a, it follows from Eq. (23) that
T z
Pol �

3lpa3b3a4

2ðb3 � a3Þ
: ð25Þ
Substitution of the relations (24) into the expression (25) leads to a power series expansion in a whose dom-
inant leading term gives the limiting value
R

b

a

h/2

O

z

α

Fig. 2. Cross-section of the polar cap through the x = 0 plane.
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lim
a!0

T z
Pol ¼

lpR4

2h
: ð26Þ
This is recognized as the known torsional stiffness of a circular pad of radius R and thickness h as given by,
for example, Muhr (1995).
4. Torsional deformation about the x-axis

Suppose now that a torsional moment of magnitudeMx is applied about the x-axis to the outer spherical
surface causing it to twist through a small angle Xx, with the inner surface remaining fixed.

4.1. Solution for the torsional stiffness

For this mode of deformation the point P within the rubber will displace in the direction of Xx along a
circle of radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
centred on the x-axis and with zero displacement in the direction parallel to the x-

axis. By resolving the polar displacements to form the Cartesian displacements it is found that in order for
the deformation mode described to occur it is required that the solutions for the displacement components
are now of the forms
ur ¼ 0; uh ¼ V ðrÞ sin/; u/ ¼ V ðrÞ cos h cos/; ð27Þ

with V(r) being a function of r alone. These satisfy identically the incompressibility equation (1) and the
corresponding stress components can be derived from Eqs. (5) and (3)4 to (3)6 as
rrr ¼ rhh ¼ r//;

rrh ¼ l
dV
dr

� V
r

� �
sin/;

rr/ ¼ l
dV
dr

� V
r

� �
cos h cos/; rh/ ¼ 0:

ð28Þ
The equilibrium equations (4) then reduce to the system
orhh

or
¼ 0;

orhh

o/
þ l r

d2V
dr2

þ 2
dV
dr

� 2
V
r

� �
sin h cos h cos/ ¼ 0;

orhh

oh
þ l r

d2V
dr2

þ 2
dV
dr

� 2
V
r

� �
sin h ¼ 0:

ð29Þ
This has the general solutions
rhh ¼ b1; V ¼ b2r þ b3=r
2; ð30Þ
with b1, b2 and b3 being arbitrary constants. But, since the bush has free surfaces at h = a and h = p � a,
b1 = 0 which implies that
rrr ¼ rhh ¼ r// ¼ 0
at every point within the bush, and from Eqs. (28) the only non-zero shear stress components are
rrh ¼ � 3lb3

r3
sin/; rr/ ¼ � 3lb3

r3
cos h cos/: ð31Þ
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The value of the constant b3 is derived by calculating the forces created in the bush by the stress compo-
nents (31). It is found that the integrals between h = a and h = p � a, with / varying from 0 to 2p, of the
components of the forces and their moments about the x-, y- and z-axis all vanish except for the moment
about the x-axis which is given by
Z 2p

0

Z p�a

a
½r sin h sin/ð� sin hrrhÞ � r cos hðcos h sin/rrh þ cos/rr/Þ	r2 sin hdhd/: ð32Þ
This must balance the applied moment, and hence evaluation of (32) using Eqs. (31) yields the relationship
b3 ¼ � Mx

6lp cos a 1þ 1
3
cos2a

� � : ð33Þ
The value of the remaining constant, b2, is ascertained by imposition of the boundary conditions at the
inner and outer surfaces. These can be expressed, respectively, in terms of the displacement components
as
uh ¼ u/ ¼ 0 for all h and / when r ¼ a ð34Þ

and
ðuh cos h sin/ þ u/ cos/Þ b cos h
Dx þ ðuh sin hÞ b sin h sin/

Dx ¼ DxXx

for all h and / when r ¼ b; ð35Þ
where the distance, Dx, from a general point on the outer surface to the x-axis is given by
Dx ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2hsin2/ þ cos2h

q
: ð36Þ
Substitution of the expressions (27)2 and (27)3 combined with the solution (30)2 into Eqs. (34) and (35)
shows that
b2 ¼ � b3

a3
¼ b3Xx

b3 � a3
: ð37Þ
It follows from Eqs. (33) and (37) that the appropriate torsional stiffness, T x, defined by
T x ¼ Mx

Xx ; ð38Þ
can be represented as
T x ¼ 6lpa3b3

b3 � a3
cos a 1þ 1

3
cos2a

� �
: ð39Þ
As would be expected, the torsional stiffness, TComp, of a complete spherical shell is reproduced in the form
(20) when the expression (39) is evaluated with a = 0.
4.2. Stresses within the bush

Substitution of the value (33) for b3 into Eqs. (31) shows that the only non-zero stress components pro-
duced in the bush are given by
rrh ¼
Mx sin/

2pr3 cos a 1þ 1
3
cos2a

� � ; ð40Þ
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rr/ ¼ Mx cos h cos/

2pr3 cos a 1þ 1
3
cos2a

� � : ð41Þ
It is clear that the maximum magnitude, rmax
r/ , of the stress component in Eq. (41) occurs on the inner spher-

ical surface at h = a or p � a when / = 0 or p, where
rmax
r/ ¼ Mx

2pa3 1þ 1
3
cos2a

� � ; ð42Þ
while rrh in Eq. (40) attains its maximum magnitude, rmax
rh , of
rmax
rh ¼ Mx

2pa3 cos a 1þ 1
3
cos2a

� � ð43Þ
at the inner surface when / = p/2 or 3p/2. It should be noted however that, as observed in analogous anal-
yses by other authors (see, for example, Gent (1992, p. 43)), in fact the stress component rrh must actually
physically decay rapidly to zero very near to the unbonded surfaces h = a and h = p � a.

4.3. Limiting case

Utilizing analogous techniques to those of Section 3.3, the torsional stiffness T x given by Eq. (39) can be
shown to yield the shear stiffness of a circular pad. By calculating TComp � T x, using Eqs. (20) and (39), a
measure of the shear stiffness, Kx

s , of the polar cap shown in Fig. 2 can be written as
Kx
s ¼

F
d
¼ lpa3b3

b3 � a3
ð4� 3 cos a � cos3aÞ; ð44Þ
where d is the deflection of the polar cap when subjected to a shear force of magnitude F, so that
Mx ¼ 2bF ; Xx ¼ d=b: ð45Þ

Taking small values of a in Eq. (44) and recalling the relations (24) leads to the limiting value
lim
a!0

Kx
s ¼

lpR2

h
: ð46Þ
This is the shear stiffness of a circular elastomer pad of radius R and thickness h.
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