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Abstract

Exact closed-form expressions are derived for the torsional stiffnesses of spherical rubber bush mountings in the two
principal modes of angular deformation, based upon the classical theory of elasticity. Agreement is found, as limiting
cases, with the known results for the torsional stiffness and shear stiffness of an elastomer pad of circular cross-section.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Major companies design and manufacture a full range of rubber bush mountings. These are utilized
widely, but are often especially developed for improving the suspension characteristics of railway rolling
stock and automobiles. Amongst these, spherical bushes play an important though specialized role, partic-
ularly in flexible couplings and floating ring couplings, where the accommodation of multidirectional move-
ment is essential.

A spherical bush mounting consists of a shell of rubber which is bonded onto inner and outer rigid, con-
centric metallic spherical housings with their polar caps removed. The aim of this paper is to provide easily-
calculable, closed-form expressions for their stiffness, and the stresses created, to aid their design, which at
present is undertaken using “proven experience’”’ according to manufacturers advertizing literature. The
analyses presented here study the two principal torsional modes of deformation, in which torsional mo-
ments are applied to the outer surface with the inner surface maintained fixed. The only previous analysis
of the situation in which the applied moment is about the z-axis was that undertaken by Hill (1975), but
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unfortunately the expression he gives for the torsional stiffness appears to be fundamentally incorrect.
There is apparently no corresponding analysis available for when the applied moment is about the x-axis.

The geometry of the bush and the fundamental governing equations are first formulated in Section 2.
Then, in Section 3, exact analytical solutions are derived for the displacement and stress components cre-
ated under a torsional deformation about the z-axis. A representation is determined for the corresponding
torsional stiffness of the spherical bush, which is demonstrated in a limiting case to reproduce the torsional
stiffness of an elastomer pad of circular cross-section. An analogous analysis is undertaken in Section 4
when the bush is subjected to a moment about the x-axis. An expression is found for the appropriate tor-
sional stiffness, which is shown to reduce to the shear stiffness of a circular pad as a limiting case.

2. Physical formulation and governing equations

Consider a spherical rubber bush which is bonded to rigid concentric spherical metal surfaces at inner
and outer radii ¢ and b, respectively, and is bounded by the conical free surfaces § = « and 6 =7 — «, as
shown in Fig. 1. Here a rectangular Cartesian coordinate system (x,y,z) is defined relative to an origin
O at the centre of the bush, with the z-axis along the line § = 0, and is related to the spherical polar coor-
dinates (7,0, ¢) of a point P within the bush by the equations

x=rsinfcos¢, y=rsinfsing, z=rcosf.

Fig. 1. Cross-section of the spherical bush through the x = 0 plane.
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The inner surface is fixed throughout, while the outer surface is subjected to torsional moments in Sections
3 and 4. The objectives here are to derive expressions in each case for the subsequent components of the
displacement and stress and the corresponding stiffnesses.

It is assumed that the rubber is homogeneous, isotropic and incompressible, and that the displacement
gradients are sufficiently small during the deformations for the classical linear theory of elasticity to be
applicable. Since the pioneering paper of Adkins and Gent (1954) in which they considered, both theoret-
ically and experimentally, the behaviour of cylindrical rubber bush mountings, these assumptions have been
widely regarded in the “rubber literature” as appropriate and justified in many practical applications. The
radial, tangential and azimuthal components of the displacement of the point P are denoted by u,, uy and
u,, respectively, and the spherical strain and stress components by ¢; and 6;;, where i, j=r, 0 or ¢, in the
usual notation.

For small strains, the assumption of incompressibility implies that

&+ €09 + €4y = 0. (1)
The strain—displacement gradient relations are
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and the constitutive equations can be written as
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where u is the shear modulus. The equilibrium equations which must be fulfilled in the radial, tangential
and azimuthal directions are
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It is convenient as an aid to the following analyzes to note at this stage that elimination, using Eq. (1), be-
tween the expressions (3) leads to the relations
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Oy = 099 + 2,“(8”' - 800)7

Gop = oo — 2U(& + 2¢0p).

3. Torsional deformation about the z-axis

Suppose that, with the inner spherical surface fixed, a torsional moment of magnitude M~ is applied
about the z-axis to the outer surface, thereby twisting it through a small angle €°.

3.1. Solution for the torsional stiffness

It is clear that in this deformation mode the point P within the rubber will displace in the azimuthal
direction along a circle of radius rsin 6 centred on, and at right angles to, the z-axis with the displacements
in the radial and tangential directions both zero. Representations for the corresponding displacement
components at the general point P in the rubber during this torsional deformation are thus sought in
the forms

u, =0, uy=0, uy=W(r)sin0, (6)

where the function W depends only upon r. The corresponding strain components follow using Egs. (2). It
is then seen that the incompressibility condition (1) is satisfied identically and, from Egs. (5), that at any
point

Grr = G0 = Opg, (7)
and it is found from Egs. (3)4 to (3)g that the only non-zero shear stress component is given by

daw wy .

Orp = 1L (v - 7) sin 6. (8)

The equilibrium equations (4) thus yield the system

660()

o =0
0G40 &w o _dw W\ .,
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6000_
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which is to be solved subject to the appropriate boundary conditions.
The general solutions of Egs. (9) are

aggg = A1, W:OC2F+OC3/I"2, (10)

where o, o, and o3 are arbitrary constants. However, a; = 0, since the bush has free surfaces at 6 = o and
0 =7n — o, and so in fact, from Egs. (7),

Gr‘r:609:6¢¢20 (11)
everywhere within the rubber. Substitution of the representation (10), into Eq. (8) gives

Grp = — 3’:;"3 sin 0. (12)
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The constant o3 is determined by equating the combined moments about the z-axis of these components to
the imposed couple M, through the expression

2n n—0o
M = / / ,4r°sin’0d0d . (13)
0 o
Evaluating this, using Eq. (12), shows that
MZ
O3 — (14)

" 12umcos (1 —1cosa)
The conditions

ug =0 for all 0 whenr=a (15)
and

uy = bsin 0 for all 0 when r =5 (16)
at the fixed inner surface and outer surface, respectively, imply by recalling Egs. (6); and (10), that

70(3 o szZ

Oy = ;—b3_a3. (17)
A representation for the required torsional stiffness, 7%, defined by
MZ
—— 18
< (18)
can now be determined from Egs. (14) and (17) in the form
. 12una®p’ 1,
T :mcosa l—gcosoc . (19)

It should be noted that this corrects the expression derived by Hill (1975, Eq. (4.7)), and subsequently re-
quoted by Hill (1981, 1982) and Mubhr (1995). Hill’s error apparently arises through the omission of a mul-
tiplicative factor of sin 0 in the expression for w in his Eq. (4.1).
Putting o = 0 into Eq. (19) gives the torsional stiffness, Tcomp, Of a complete spherical shell as
Suna’h’

b» -

(20)

TComp =

3.2. Stresses within the bush

The only non-zero stress component created in the bush is given by Egs. (12) and (14) as
B M7 sin 0
 dmcosa(l —Lcos?a)

()

It attains its maximum value, o of

MZ
Gn]ax — , 22
" 4nad cos o1 —1cosx) (22)

when r =a and 6 = =/2.
It is of especial interest to observe that the unbonded free surfaces 6 = o and § = 7 — & remain com-
pletely free of stress.
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3.3. Limiting case

It is instructive to give added justification of the expression (19) for the torsional stiffness, 77, by briefly
demonstrating that it enables the known torsional stiffness of an elastomer pad of circular cross-section to
be reassuringly reproduced as a limiting case.

The combined torsional stiffness of the two polar caps defined by 0 < o and 0 > 7 — o with a < r < b for
0 < ¢ < 27 is obtained by subtracting 77, given by Eq. (19), from Tcomp in Eq. (20). Hence the torsional

stiffness, T%,,, of each polar cap is given by

. 2una’h’
S

(2 — 3cosa + cos’a). (23)

The cap for 0 < « is depicted in Fig. 2, with R as the arc distance from 6 = 0 to 8 = « along the mid-section
of the region of thickness /.
It is clear from Fig. 2 that @, b, h, R and o are related by
R h b= R . h
“TuT o 27
As the radii @ and b are increased, the shape of the region will tend towards that of a circular pad of radius
R and thickness 4. This process can be regarded as equivalent to taking the limit of 775, as the inclination, a,
of the face 6 = o tends to zero. For small values of «, it follows from Eq. (23) that

(24)

oA 3una’b’ot
P 0 )

Substitution of the relations (24) into the expression (25) leads to a power series expansion in & whose dom-
inant leading term gives the limiting value

(25)

Fig. 2. Cross-section of the polar cap through the x =0 plane.
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,tmR4

2h
This is recognized as the known torsional stiffness of a circular pad of radius R and thickness / as given by,
for example, Muhr (1995).

hm Thoy = (26)

4. Torsional deformation about the x-axis

Suppose now that a torsional moment of magnitude M™ is applied about the x-axis to the outer spherical
surface causing it to twist through a small angle Q¥, with the inner surface remaining fixed.

4.1. Solution for the torsional stiffness

For this mode of deformation the point P within the rubber will displace in the direction of Q¥ along a
circle of radius /y* + z? centred on the x-axis and with zero displacement in the direction parallel to the x-
axis. By resolving the polar displacements to form the Cartesian displacements it is found that in order for
the deformation mode described to occur it is required that the solutions for the displacement components
are now of the forms

u =0, uy="V(r)sing, uy="V(r)cosbcosdap, (27)

with V(r) being a function of r alone. These satisfy identically the incompressibility equation (1) and the
corresponding stress components can be derived from Eqgs. (5) and (3)4 to (3)g as

O = 000 = Ogs

G = ar_v sin ¢
r0 — lu dr r ? (28)
dr v
Orp = M(E — 7) cosfcos ¢, oayy =0.
The equilibrium equations (4) then reduce to the system
Gl
=20 _
or ’
dow v _dr v _
3 ( ﬁ+2§_27 sinflcosfcos¢p =0, (29)
60‘00 d2 dar B
This has the general solutions
aw =P, V=P +ps/r, (30)

with f;, f» and f5 being arbitrary constants. But, since the bush has free surfaces at 0 =« and 0 =7 — «,
f1 =0 which implies that

Oy =099 =04y =0
at every point within the bush, and from Egs. (28) the only non-zero shear stress components are

ﬂﬁx .Uﬂs

Gy = sing, 0,4 = — cos 0 cos ¢. (31)
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The value of the constant f35 is derived by calculating the forces created in the bush by the stress compo-
nents (31). It is found that the integrals between 0 = o and 0 = — o, with ¢ varying from 0 to 2z, of the
components of the forces and their moments about the x-, y- and z-axis all vanish except for the moment
about the x-axis which is given by

2n n—o
/ / [rsin 0sin ¢(— sin 0a,9) — rcos O(cos Osin ¢ 6,9 + cos ¢ g,4)]r* sin 0dOdep. (32)
0 o

This must balance the applied moment, and hence evaluation of (32) using Egs. (31) yields the relationship
M)C
By =— 1 TN
6umcos a1 + 1cosx)

(33)

The value of the remaining constant, f5,, is ascertained by imposition of the boundary conditions at the
inner and outer surfaces. These can be expressed, respectively, in terms of the displacement components
as

up=uy, =0 forall0and ¢ whenr=a (34)
and
(ugcosOsin ¢ + uy cos ) beosd + (ug sin 0) bsinOsin¢ =D
D D
for all 0 and ¢ when r = b, (35)

where the distance, D*, from a general point on the outer surface to the x-axis is given by

D" = b\/sin20sin2¢) + cos?0). (36)

Substitution of the expressions (27), and (27); combined with the solution (30), into Egs. (34) and (35)
shows that

B P
e Troa 7)
It follows from Egs. (33) and (37) that the appropriate torsional stiffness, 7, defined by
M)C
T ="
=i (38)
can be represented as
N 6una’h’ I
T =3y cosa 1+§cosoc . (39)

As would be expected, the torsional stiffness, Tcomp, of a complete spherical shell is reproduced in the form
(20) when the expression (39) is evaluated with o = 0.

4.2. Stresses within the bush

Substitution of the value (33) for ff; into Eqs. (31) shows that the only non-zero stress components pro-
duced in the bush are given by

B M*sin ¢
~ 2mr cos (1 +1cos?a)’

(40)

0,9
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M* cos 0 cos ¢

= . 41
2mr3 cos o (1 4 Lcos?or) (41)

(%)

Itis clear that the maximum magnitude, o3, of the stress component in Eq. (41) occurs on the inner spher-
ical surface at 0 = o or = — o when ¢ =0 or =, where
MX
o = , 42
" 2na® (1 + cos?a) (42)

while g, in Eq. (40) attains its maximum magnitude, o7, of

Mx
Gmax — 43
o 2ma’ cos a1 + 1cos?a) (43)

at the inner surface when ¢ = n/2 or 3n/2. It should be noted however that, as observed in analogous anal-
yses by other authors (see, for example, Gent (1992, p. 43)), in fact the stress component o,y must actually
physically decay rapidly to zero very near to the unbonded surfaces 6 = o and 6 =7 — a.

4.3. Limiting case
Utilizing analogous techniques to those of Section 3.3, the torsional stiffness 7" given by Eq. (39) can be

shown to yield the shear stiffness of a circular pad. By calculating Tcomp — 7, using Eqs. (20) and (39), a
measure of the shear stiffness, K3, of the polar cap shown in Fig. 2 can be written as

. F  und’d’ 3
KS:E:m(4—3cosac—cos o), (44)
where d is the deflection of the polar cap when subjected to a shear force of magnitude F, so that
M*=2bF, Q@ =d/b. (45)
Taking small values of « in Eq. (44) and recalling the relations (24) leads to the limiting value
. wIR2
ImK: == (46)

This is the shear stiffness of a circular elastomer pad of radius R and thickness /.
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